aria math什么意思_
1.张鸿庆的论文
2.VUE父子组件之间的传值,以及兄弟组件之间的传值
3.求英语高手翻译(追100,大哥大姐帮帮)
北蒂拉杜马蒂ThiladhunmathiUthuru(Haa-Alif)
南蒂拉杜马蒂ThiladhunmathiDhekunu(Haa-Dhaalu)
北米拉杜马杜卢MiladhunmaduluUthuru(Shiyani)
南米拉杜马杜卢MiladhunmaduluDhekunu(Noonu)
北马洛斯马杜卢MaalhosmaduluUthuru(Raa)
南马洛斯马杜卢MaalhosmaduluDhekunu(Baa)
法迪福卢Faadhippolhu(Lhiyani)
玛律MaléAtoll(Kaafu)
北阿里AriAtollUthuru(Alif-Alif)
南阿里AriAtollDheknu(Alif-Dhaal)
费利杜FelidhéAtoll(Vau)
穆拉库MulakuAtoll(Meemu)
北尼兰杜NilandhéAtollUthuru(Faafu)
南尼兰杜NilandhéAtollDhekunu(Dhaalu)
科卢马杜卢Kolhumadulu(Thaa)
哈杜马蒂Hadhdhunmathi(Laamu)
北苏瓦迪瓦HuvadhuAtollUthuru(Gaafu-Alif)
南苏瓦迪瓦HuvadhuAtollDhekunu(Gaafu-Dhaalu)
福阿穆拉库FuaMulaku(?iyani)
阿杜Addu(Seenu)
张鸿庆的论文
指的是背景音乐吧
最新版本经常出现的:
Key
Minecraft
Oxygène
Clark
以下应该是以前版本出现过的:
Subwoofer Lullaby
Living Mice
Haggstrom
Mice on Venus
Dry Hands
Wet Hands
Danny
下界背景音乐:
Dead Voxel
Concrete Halls
Warmth
Ballad of the Cats
创造模式的背景音乐:
Blind Spots
Biome Fest
Haunt Muskie
Aria Math
Taswell
Dreiton
主菜单的背景音乐:
Moog City 2
Mutation
Beginning 2
Floating Trees
在这里可以找到这些音乐:
Minecraft - Volume Alpha
://c418.bandcamp/album/minecraft-volume-alpha
Minecraft - Volume Beta
://c418.bandcamp/album/minecraft-volume-beta
VUE父子组件之间的传值,以及兄弟组件之间的传值
1. Zhang Hongqing,Fan EG.,Applications of mechanical methods to partial differential equations,Mathematics Mechanization and Applications (17th chapter),Academic Press Limited(2000).
2. Zhang Hongqing,A united theory on general solutions of system of elasticity,J.Dalian Univ.Tech.,18(18):25-47.
3. Zhang Hongqing,Algebraic constructions for general solutions of linear operator systems.Acta.Mech.Sinica(Special Issue): 152-161(1981).
4.Zhang Hongqing,Superfluous order and the proper solution of the Maxwell equation,Appl.Math.Mech,2(1981):349-360.
5. Zhang Hongqing,Wang Z.,The completeness and roximation of Hu Haichang’s solution,Kexue Tongbao,1986,10:667-670.
6. Zhang,Hongqing ,C-D integrable system and computer aided solver for differential equations. Computer mathematics (Matsuyama,2001),221--226,Lecture Notes Ser. Comput.,9,World Sci. Publishing,River Edge,NJ,2001.
7. Zhang Hongqing,Wu F.,General solution for a class of system of partial differential equations and its lication in the theory of shells,Acta Mech.Sinica,24(1992):700-707.
8. Zhang Hongqing,Wu F.,General method for general solution of theory of plane and shell,Kexue Tongbao,13(1993):671-672.
9. Zhang Hongqing,The method for constructing general solution of system of partial differential equations, Proc.Comput..Mech.Tianjin Congr.,110-112(1991).
10. Zhang Hongqing,Hamiltonian representation for linear selfadjoint partial operators,Thirty years for nonholonomic mechanics in China,Henan Univ.Press,Kaifeng,1994,182-186.
11. Zhang Hongqing,The algebraization,mechanization,symplectication and geometrization for mechanics,Modern Meth. And Mech.Ⅶ,Shanghai Univ.Press,Shanghai,19,20-25.
12. Zhang Hongqing,Chao L.,Operational form Hilbert Nukkstellensatz and symbolic algorithm for constructing general solution of system in elasticity,J. Dalian Univ.Tech.1996,,36:373-379.
13. Zhang Hongqing,Chao L.,Mathematica program package to compute symmetries of PDEs and its lications,Comput. Phys.,19,14:375-379.
14. Zhang Hongqing,Chao L.,Exact algorithm of Taylor polynomial for symmetries of nonlinear partial differential equations,Appl. Math. Mech.,1998,19:195-202.
15. Zhang Hongqing,Fan E.,Backlund transformation and exact solution for (2+1) dimensional KP equation,J. Dalian Univ.Tech.,19,37:624-626.
16. Zhang Hongqing,Fan E.,Linearization,similarity reduction and soliton solutions of KP equation in shallow water,J.Nonliear Dynamics,1998,5: 236-239.
17. Zhang Hongqing,Feng H.,Algebraic structure of general solutions to system of nonhomogeneous linear operator equations,J. Dalian Univ.Tech.,1994,34:249-255.
18. Zhang Hongqing,Wu F.,Mechanical method to construct the general solution for a system of partial differential equations,Workshop Math.Mech.,Int.Academic Publ.,Beijing,1992,280-285.
19. Zhang Hongqing,Wu F.,The computational differential algebraic geometrical method for constructing the fundamental solution of partial differential equations,Proc.3rd Congr.Finete Element Method China,Henan,China,1992,183-191.
20. Wang Ming,Zhang Hongqing,On the convergence of quasi-conforming elements for linear elasticity problem,JCM,Vol 4,No. 2,131-145(1986).
21. Wang Ming,Zhang Hongqing,The general Korn-Poincare inequality and its lications I,Kexue Taosuo,Vol 2,No. 3,83-92(1986).
22. Wang Ming,Zhang Hongqing,A note on some finite element methods,Comput.Math.,Vol 8,No. 3,303-313(1986).
23. Wang Ming,Zhang Hongqing,The finite element method of the stational Nier-Stokes system in plane,J. Dalian Univ.Tech.,1986,25:1-6.
24. Wang Ming,Zhang Hongqing,The embedded property and compactness of the finite element space,Appl. Math. Mech.,1988,9:127-134.
25. Zhang Hongqing,The general patch test and 9-parameter quasi-conforming element,Proc.the Sino-France Symposium on Finite Element Methods,Science Press,Gordan and Breach,1983,566-583.
26. Zhang Hongqing,Wang Ming, Finite element roximations with multiple sets of functions and quasi-conforming elements,Proc.the Beijing Symp on Diff.Geometry and Diff.Equations,,Science Press,Beijing,1985,354-365.
27. Zhang Hongqing,Wang Ming, Finite element roximations with multiple sets of functions and quasi-conforming elements,Appl. Math. Mech.,1985,6:41-52.
28. Zhang Hongqing,Wang Ming,the compactness of quasi-conforming elements space and the convergence of quasi-conforming elements,Appl. Math. Mech.,1986,7:409-423.
29.Yong Chen,Zhenya Yan and Hongqing Zhang,Exact solutions for a family of variable-coefficient Reaction-Duffing equations via the Backlund transformation,Theor. Math. Phys.,132⑴ (2002) 0-5.
30. Yong Chen,Zhenya Yan,Biao Li and Hongqing Zhang,New Explicit Solitary We Solutions and Periodic We Solutions for the Generalized Coupled Hirota-Satsuma KdV System,Commun. Theor. Phys.,38(2002)261-262.
31. Yong Chen,Biao Li and Hongqing Zhang,Backlund Transformation and Exact Solutions for a New Generalized Zakhorov-Kuznetsov Equation,Commun. Theor. Phys.,39 (2003) 135-140.
32. Yong Chen,Yu Zheng and Hongqing Zhang,The Hamiltonian Equations in Some Mathematics and Physics Problems,Appl. Math. Mech.,24⑴ (2003) 22-27.
33. Yong Chen,Zhenya Yan and Hongqing Zhang,Applications of Fractional Exterior Differential in Three Dimensional Space,Appl. Math. Mech.,24⑶ (2003) 256-260.
34. Yong Chen,Biao Li and Hongqing Zhang,Exact Trelling Solutions for Some Nonlinear Evolution Equations with Nonlinear Terms of Any Order,Internat. J. Modern Phys. C,14⑴ (2003) 99-112.
35.Yong Chen,Biao Li and Hongqing Zhang,Generalized Riccati equation expansion method and its lication to the (2+1)-dimensional Boussinesq equation,Internat. J. Mod. Phys. C,14⑷ (2003) 471-482.
36. Yong Chen,Zhenya Yan and Hongqing Zhang,New Explicit Exact Solutions for A Generalized Hirota-Satsuma Coupled KdV System and A Coupled MKdV Equation,Chin. Phys.,12⑴ (2003) 1-10.
37. Yong Chen,Biao Li and Hongqing Zhang,Exact solutions for a new class of nonlinear evolution equations with nonlinear term of any order, Chaos,Solitons and Fractals,17 (2003) 675-682.
38. Yong Chen,Zhenya Yan and Hongqing Zhang,New explicit solitary we solutions for (2+1)-dimensional Boussinesq equation and (3+1)-dimensional KP equation,Phys. Lett. A,307 (2003) 107-113.
39. Yong Chen,Biao Li and Hongqing Zhang,Auto-B\cklund transformation and exact solutions for modified nonlinear dispersive $mK(m,n)$ equations,Chaos,Solitons and Fractals,17 (2003) 693-698.
40.Yong Chen,Biao Li and Hongqing Zhang,Generalized Riccati equation expansion method and its lication to the Bogoylenskii's generalized breaking soliton equation,Chin. Phys.,2003,8.
41. Yong Chen,Biao Li and Hongqing Zhang,Extended Jacobi elliptic function method and its lications to (2+1)-dimensional dispersive long we equation,Chin. Phys.,2004,1.
42. Biao Li,Yong Chen and Hongqing Zhang,Explicit Exact Solutions for New General Two-dimensional KdV-type and Two-dimensional KdV-Burgers-type Equations with Nonlinear Terms of Any Order,J. Phys. A: Math. Gen.,35 (2002) 8253-8265.
43. Biao Li,Yong Chen and Hongqing Zhang,Explicit Exact Solutions for Compound KdV-type and Compoud KdV-Burgers-type Equations with Nonlinear Terms of Any Order,Chaos,Solitons and Fractals,15 (2003) 647-654.
44. Biao Li,Yong Chen and Hongqing Zhang,Auto-Backlund transformation and exact solutions for compound KdV-type and compound KdV-Burgers-type equations with nonlinear terms of any order,Phys. Lett. A,305⑹ (2002) 377-382.
45. Biao Li,Yong Chen and Hongqing Zhang,Explicit Exact Solutions for Some Nonlinear Partial Differential Equations with Nonlinear Terms of Any Order,Czech. J. Phys.,53⑷ (2003) 283-295. (SCI)}
46. Biao Li,Yong Chen,Hengnong Xuan and Hongqing Zhang, Symbolic computation and construction of soliton-like solutions for a breaking soliton equation,Chaos,Solitons and Fractals,17⑸ (2003) 885-893.
47. Xuedong Zheng,Yong Chen and Hongqing Zhang,Generalized Extended Tanh-Function Methods and its Application to (1+1)-Dimensional Dispersive Long We Equation,Phys. Lett. A,311 (2003) 145-157.
48. Xuedong Zheng,Yong Chen,Biao Li and Hongqing Zhang,A new generalization of extended tanh-function method for solving nonlinear evolution equations,Commun. Theor. Phys.,39 (2003) 647-652.
49. De-sheng Li and Hong-qing Zhang,New soliton-like solutions to the potential Kadomstev–Petviashvili (PKP) equation,(2003) Applied Mathematics and Computation,Volume 146,Issues 2-3,Pages 381-384.
50. De-sheng Li and Hong-qing Zhang,Some New Exact Solutions to the Dispersive Long-We Equation in (2+1)-Dimensional Spaces,(2003) Communications in Theoretical Physics,Volume 40,Issues 2,Pages 143-146.
51. De-sheng Li and Hong-qing Zhang,Some new exact solutions of the integrable Broer–Kaup equations in (2+1)-dimensional spaces,(2003)Chaos,Solitons & Fractals,Volume 18,Issue 1, Pages 193-196.
52. De-sheng Li and Hong-qing Zhang,Exact solutions of the (3+1)-dimensional KP and KdV-type equation (2003) Communications in Theoretical Physics,Volume 39,Issues 4,Pages 405-408.
53. De-sheng Li and Hong-qing Zhang,A further extended tanh-function method and new soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1) dimensional spaces,Applied Mathematics and Computation 147 (2004) 537–545.
54. De-sheng Li and Hong-qing Zhang,A new extended tanh-function method and its lication to the dispersive long we equations in (2+1)- dimensions,Applied Mathematics and Computation 147 (2004) 789–7.
55. Huaitang Chen,Hongqing Zhang, Extended Jacobin elliptic function method and its lications. [Extended Jacobian elliptic function method and its lications,J.APPL.Math.Comput.,10 (2002) 119--130.
56. Huaitang Chen,Hongqing Zhang, Improved Jacobin elliptic function method and its lications. Chaos,Solitons and Fractals 15 (2003) 585--591.
57 . Zhuosheng Lu,Hongqing Zhang,On a further extended tanh method. Phys.Lett.A, 307 (2003) 269--273.
58. Zhuosheng Lu,Hongqing Zhang,Soliton-like and period form solutions for high dimensional nonlinear evolution equations. Chaos,Solitons and Fractals 17 (2003) 669--673.
59.Huaitang Chen,Hongqing Zhang,New multiple soliton solutions to the general Burgers-Fisher equation and the Kuramoto-Sivashinsky equation,Chaos,Solitons and Fractals 19 (2004) 71–76.
60. Zhuosheng Lu,Hongqing Zhang,Soliton like and multi-soliton like solutions for the Boiti–Leon–Pempinelli equation,Chaos,Solitons and Fractals 19 (2004) 527–531.
61. Yong Chen,Xuedong Zheng,Biao Li,Hongqing Zhang,New exact solutions for some nonlinear differential equations using symbolic computation,Applied Mathematics and Computation 149 (2004) 277–298.
62. Li,De-Sheng; Lü,Zhuo-Sheng; Zhang,Hong-Qing,Exact solutions of the (3+1)-dimensional KP and KdV-type equations. Commun. Theor. Phys. (Beijing) 39 (2003),no. 3,267—270.
63. Zhang,Yu-Feng; Zhang,Hong-Qing,Solitary we solutions for the coupled Ito system and a generalized Hirota-Satsuma coupled KdV system. Commun. Theor. Phys. (Beijing) 36 (2001),no. 6,657--660.
64. ⅪA Tie-cheng,ZHANG Hong-qing,Generalized Numerical Radius of Real Quaternion Matrices with Symmetric Function,CHINESE QUARTERLY JOURNAL OF MATHEMATICS,Vol. 15No. 3,34-38.
65. Zhang Yufeng,Zhang Hong qing,BACKLUND TRANORMATION AND SIMILARITYREDUCTIONSOF BOUSSINESQ EQUATION,Transactions of Nanjing University of Aeronautics&Astronautics,Vo l. 17. No. 2,199-202.
66. Alatancang,Zhang Hongqing,Zhong Wanxie,PSEUDO-DIⅥSION ALGORITHM FOR MATRⅨ MULTⅣARIABLE POLYNOMIAL AND ITS APPLICATION,Applied Mathematics and Mechanics,Vol . 21,No. 7,733-740.
67. ZHANG Yu-feng,ZHANG Hong-qing,A FAMILY OF INTEGRABLE SYSTEMS OF LIOUⅥLLE AND LAX REPRESENTATION,DARBOUX TRANORMATIONS FOR ITS CONSTRAINED FLOWS,Applied Mathematics and Mechanics,Vol 23,No 1,Jan 2002,26-34.
68. ZHANG Hong- qing,ⅪE Fu- ding,LU Bin,ASYMBOLIC COMPUTATION METHOD TO DECIDE THE COMPLETENESS OF THE SOLUTIONS TO THE SYSTEM OF LINEAR PARTIAL DIFFERENTIAL EQUATIONS,Applied Mathematics and Mechanics,Vol 23,No 10,1134-1139.
69. ZHANG Yu-feng,ZHANG Hong-qing,YAN Qing-you,Integrable couplings of a generalized AKNS hierarchy,J. CENT. SOUTHUNⅣ. TECHNOL.,Vol . 9,No. 3,220-223.
70. ZHANG Yu-feng,ZHANG Hong-qing,YAN Qing-you,Integrable couplings of Botie-Pempinelli-Tu (BPT) hierarchy,Physics Letters A 299 (2002) 543–548.
71. ZHANG Hong-qing,ZHANG Yu-feng,BACKLUND TRANORMATION,NONLINEAR SUPERPOSITION FORMULAE AND INFINITE,Applied Mathematics and Mechanics,Vol 22,No 10.
72. TONG Deng-ke,Zhang Hong-qing,THE FLOW PROBLEM OF FLUIDS FLOW IN A FRACTALRES ERVOIR WITH DOUBLE POROSITY,Applied Mathematics and Mechanics,Vol 22,No 10,1118-1126.
73. FAN En-gui,ZHANG Hong-qing,A NEW COMPLETELY INTEGRABL ELIOUⅥLLE’S SYSTEM,ITS LAX REPRESENTATION AND BI-HAMILTONIAN STRUCTURE,Applied Mathematics and Mechanics,Vol 22,No 5,520-527.
74. Chen,Yong; Yan,Zhenya; Li,Biao; Zhang,Hong Qing,New explicit solitary we solutions and periodic we solutions for the generalized coupled Hirota-Satsuma KdV system. Commun. Theor. Phys. (Beijing) 38 (2002),no. 3,261--266.
75. Chen,Yong; Yan,Zhenya; Zhang,Hong Qing , Oaining exact solutions for a family of reaction-Duffing equations with variable coefficients using a Backlund transformation (Russian) Teoret. Mat. Fiz. 132 (2002),no. 1,90—96.
76. Yan,Zhenya; Zhang,Hong Qing, Constructing families of soliton-like solutions to a $(2+1)$-dimensional breaking soliton equation using symbolic computation. Comput. Math. Appl. 44 (2002),no. 10-11,1439--1444.
77. Yan,Zhenya; Zhang,Hong Qing ,A family of new integrable couplings with two arbitrary functions of TC hierarchy. J. Math. Phys. 43 (2002),no. 10,48--4986.
78. Xie,Fu Ding; Yan,Zhenya; Zhang,Hong Qing, Similarity reductions for the nonlinear evolution equation arising in the Fermi-Pasta-Ulam problem. Appl. Math. Mech. (English Ed.) 23 (2002),no. 4,380--386;
79. Yan,Zhenya; Zhang,Hong Qing ,Multiple soliton-like and periodic-like solutions to the generalization of integrable (2+1)-dimensional dispersive long-we equations. J. Phys.Soc. Japan 71 (2002),no. 2,437--442.
80. Yan,Zhenya; Zhang,Hong Qing, A Lax integrable hierarchy,N-Hamiltonian structure,r-matrix,finite-dimensional Liouville integrable involutive systems,and involutive solutions. Chaos Solitons Fractals 13 (2002),no. 7,1439--1450.
81. Yan,Zhenya; Zhang,Hong Qing, A new hierarchy of generalized derivative nonlinear Schrodinger equations,its bi-Hamiltonian structure and finite-dimensional involutive system. Nuovo Cimento Soc. Ital. Fis. B ⑿ 116 (2001),no. 11,1255--1263.
82. Yan,Zhenya; Zhang,Hong Qing ,Symbolic computation and abundant new families of exact solutions for the coupled modified KdV-KdV equation. Computer mathematics (Matsuyama,2001),193--200,Lecture Notes Ser. Comput.,9,World Sci. Publishing,River Edge,NJ,2001. 3
83. Yan,Zhenya; Xie,Fu-Ding; Zhang,Hong Qing ,Symmetry reductions,integrability and solitary we solutions to high-order modified Boussinesq equations with damping term. Commun. Theor. Phys. (Beijing) 36 (2001),no. 1,1--6.
84. Yan,Zhenya; Zhang,Hong Qing, Similarity reductions and analytic solutions for (2+1)- dimensional dispersive long we equations. (Chinese) Acta Math. Sci. Ser. A Chin. Ed. 21 (2001),no. 3,384--390.
85. Yan,Zhenya; Zhang,Hong Qing, Study on exact analytical solutions for two systems of nonlinear evolution equations. Appl. Math. Mech. (English Ed.) 22 (2001),no. 8,925--934;
86. Yan,Zhenya; Zhang,Hong Qing, Study of explicit analytic solutions for the nonlinear coupled scalar field equations. Appl. Math. Mech. (English Ed.) 22 (2001),no. 6,637--641;
87. Xia,Tie Cheng; Zhang,Hong Qing; Yan,Zhenya, New explicit and exact trelling we solutions for a class of nonlinear evolution equations. Appl. Math. Mech. (English Ed.) 22 (2001),no. 7,788--793;
88. Yan,Zhenya; Zhang,Hong Qing, New explicit solitary we solutions and periodic we solutions for Whitham-Broer-Kaup equation in shallow water. Phys. Lett. A 285 (2001),no. 5-6,355--362.
89. Yan,Zhenya; Zhang,Hong Qing, A new Lax-integrable hierarchy of evolution equations and its infinite-dimensional bi-Hamiltonian structure. (Chinese) Acta Phys. Sinica 50 (2001),no. 7,1232--1236.
90. Yan,Zhenya; Zhang,Hong Qing, Auto-Darboux transformation and exact solutions of the Brusselator reaction diffusion model. Appl. Math. Mech. (English Ed.) 22 (2001),no. 5,541--546;
91. Xie,Fuding; Yan,Zhenya; Zhang,Hong Qing, Explicit and exact treling we solutions of Whitham-Broer-Kaup shallow water equations. Phys. Lett. A 285 (2001),no. 1-2,76--80.
92. Xia,Tie Cheng; Zhang,Hong Qing; Yan,Zhenya A new roach to constructing exact solutions of nonlinear evolution equations. (Chinese) J. Dalian Univ. Technol. 41 (2001),no. 3,260--263.
93. Yan,Zhenya; Zhang,Hong Qing, Symbolic computation and new families of exact soliton-like solutions to the integrable Broer-Kaup (BK) equations in (2+1)-dimensional spaces. J. Phys. A 34 (2001),no. 8,1785--1792.
94. Yan,Zhenya; Zhang,Hong Qing, A hierarchy of generalized AKNS equations,N-Hamiltonian structures and finite-dimensional involutive systems and integrable systems. J. Math. Phys. 42 (2001),no. 1,330--339.
95. Yan,Zhenya; Zhang,Hong Qing ,Some conclusions for (2+1)-dimensional generalized KP equation: Darboux transformation,nonlinear superposition formula and soliton-like solutions. Computer mathematics (Chiang Mai,2000),239--248,Lecture Notes Ser. Comput.,8,World Sci. Publishing,River Edge,NJ,2000.
96. Yan,Zhenya; Zhang,Hong Qing, Similarity reductions for a nonlinear we equation with damping term. (Chinese) Acta Phys. Sinica 49 (2000),no. 11,2113--2117.
. Yan,Zhenya; Zhang,Hong Qing, Applications of Backklund transformations to explicit and exact solutions in nonlinear we equations. Commun. Theor. Phys. (Beijing) 34 (2000),no. 2,365--368.
98. Zhang,Hong Qing; Yan,Zhenya, Two types of new algorithms for finding explicit analytical solutions of nonlinear differential equations. Appl. Math. Mech. (English Ed.) 21 (2000),no. 12,1423--1431;
99. Yan,Zhenya; Zhang,Hong Qing, Similarity reductions for +1$-dimensional variable coefficient generalized Kadomtsev-Petviashvili equation. Appl. Math. Mech. (English Ed.) 21 (2000),no. 6,645--650;
100. Yan,Zhenya; Zhang,Hong Qing ,On a new lgorithm of constructing solitary we solutions for systems of nonlinear evolution equations in mathematical physics. Appl. Math. Mech. (English Ed.) 21 (2000),no. 4,383--388;
101. Yan,Zhenya; Zhang,Hong Qing, Explicit exact solutions of nonlinear roximate equations for long wes in shallow water. (Chinese) Acta Phys. Sinica 48 (1999),no. 11,1962--1968.
102. Yan,Zhenya; Zhang,Hong Qing, Exact soliton solutions of variable coefficient KdV-MKdV equations with three arbitrary functions. (Chinese)Acta hys. Sinica 48 (1999),no. 11,1957--1961.
103. Yan,Zhenya; Zhang,Hong Qing; Fan,En Gui,New explicit trelling we solutions for a class of nonlinear evolution equations. (Chinese) Acta Phys. Sinica 48 (1999),no. 1,1--5.
104. Yan,Zhenya; Zhang,Hongqing, New explicit and exact trelling we solutions for a system of variant Boussinesq equations in mathematical physics. Phys..Lett. A 252 (1999),no.6,291--296.
105.关于F型空间的一个几何性质 东北人民大学自然科学学报 1957.2
106.船体数学放样的数值松弛法 大边工学院学报 13.1
107.船体数学放样的松弛法 造船技术 13.3
108.想像猜测与数理科学 自然辩证法信息 1982.3
109.广义分片检验与12参数拟协调元 大连工学院学报 1982.3
110.广义分片检验与9参数拟协调元 科学探索 1982.4
111.数学直觉的意义和应用 高等教育研究 .1
112.数学抽象原理论与抽象原分析法 数学研究与评论 1985.2
求英语高手翻译(追100,大哥大姐帮帮)
一、 Vue父子 组件之间传值
vue使用中,经常会用到组件,好处是:
1、如果有一个功能很多地方都会用到,写成一个组件就不用重复写这个功能了;
2、页面内容会简洁一些;方便管控;
子组件的传值是通过props来传递数据,$emit来触发;
下面是一个简单的子组件props传值:
父组件的部分:
首先引入组件,在组件上绑定你要传给组件的值;
然后,在组件里通过props来接收你从父页面传过来的值;so,父组件把值传给子组件就完成了;
下面是一个子组件在把值传给父组件的例子:
父组件部分:
子组件部分:
先是<nobr aria-hidden="true" style="box-sizing: border-box; outline: 0px; margin: 0px; padding: 0px; transition: none 0s ease 0s; border: 0px; max-width: none; max-height: none; min-width: 0px; min-height: 0px; vertical-align: 0px; line-height: normal; text-decoration: none; white-space: nowrap !important; font-family: KaTeX_Main, "Times New Roman", serif; overflow-wrap: break-word;">change监听input值的变化,通过</nobr><math xmlns="://.w3.org/1998/Math/MathML"><semantics><annotation encoding="lication/x-tex">change监听input值的变化,通过</annotation></semantics></math>change监听input值的变化,通过emit来连接父组件和子组件之间的;transferUser是在父组件连接的名称,后面跟上返回的数据;然后在父组件通过getUser获取数据,就这样子传父的过程就完成了…
二、 兄弟组件之间的传值
兄弟组件之间的传值和父子组件之间的传值非常相似,都是通过$emit;
原理是:vue一个新的实例,类似于一个站,连接着两个组件,也就是一个中央总线;
下面是一个bus实例:
1、创建一个firstChild组件,引入bus,接着一个按绑定数据传输:
我们通过一个 emit实例方法触发当前实例(这里的当前实例就是bus)上的,附加参数都会传给回调。
下面是另一个组件,引入bus实例,通过一个p标签接收数据:
这个组件的mounted里,我们监听了userDefinedEvent,并把传递过来的通过 emit)的额外参数。
接下来就是展示真正的效果的时候了:
点击之后:
总结:
1,首先创建一个总线,例如bus,作为一个通讯的桥梁;
2,在需要传值的组件中,通过<nobr aria-hidden="true" style="box-sizing: border-box; outline: 0px; margin: 0px; padding: 0px; transition: none 0s ease 0s; border: 0px; max-width: none; max-height: none; min-width: 0px; min-height: 0px; vertical-align: 0px; line-height: normal; text-decoration: none; white-space: nowrap !important; font-family: KaTeX_Main, "Times New Roman", serif; overflow-wrap: break-word;">emit触发一个自定义,并传递参数;3,在接收数据的组件中,通过</nobr><math xmlns="://.w3.org/1998/Math/MathML"><semantics><annotation encoding="lication/x-tex">emit触发一个自定义,并传递参数;3,在接收数据的组件中,通过</annotation></semantics></math>emit触发一个自定义,并传递参数;3,在接收数据的组件中,通过on监听自定义,并处理传递过来的参数;
另外:
1、兄弟组件之间与父子组件之间的数据交互,两者相比较,兄弟组件之间的通信其实和子组件向父组件传值有些类似,其实他们的通信原理都是相同的,例如子向父传值也是<nobr aria-hidden="true" style="box-sizing: border-box; outline: 0px; margin: 0px; padding: 0px; transition: none 0s ease 0s; border: 0px; max-width: none; max-height: none; min-width: 0px; min-height: 0px; vertical-align: 0px; line-height: normal; text-decoration: none; white-space: nowrap !important; font-family: KaTeX_Main, "Times New Roman", serif; overflow-wrap: break-word;">emit和</nobr><math xmlns="://.w3.org/1998/Math/MathML"><semantics><annotation encoding="lication/x-tex">emit和</annotation></semantics></math>emit和on的形式,只是没有eventBus,但若我们仔细想想,此时父组件其实就充当了bus这个总线的角色。
2、这种用一个Vue实例来作为中央总线来管理组件通信的方法只适用于通信需求简单一点的项目,对于更复杂的情况,Vue也有提供更复杂的状态管理模式Vuex来进行处理。
来自无线电台的消息,希望引起高度重视。我是罗伯特,我是米歇尔。今天对维基尼亚来说是一个恐怖的日子,昨天这里发生一起枪击案,关于此案详情今天晚上将有进一步介绍,据了解,枪击人名叫孙会邱,23岁,是维基尼亚技术大学英语专业学生。他出生于南韩,在华盛顿,维基尼亚北部长大。他的同学说他一直很不合群,老是一个人单独吃饭,有时甚至不答理别人的问候。今天下午维基尼亚技术大学举行了一个会谈,悼念昨天早上遭枪击死亡的32个人,布什总统和第一夫人从华盛顿赶到blackburgs参加维基尼亚技术大学的团体会谈。现在,我们将描述昨天枪杀案中的其中几个受害者。
枪杀开始是在一个宿舍中,有两个学生死亡,赖安.克拉克和埃米丽.赖安今年22岁,主修心理学,生物学和英语三个专业,即将毕业,而且他还是维基尼亚行军乐队的一个成员.
埃米丽,19岁,大一新生,在他的家乡维基尼亚.伍德是个广为人知的动物保护者.事实上,她学的专业是动物与诗意科学.在我的空间里她写道,除了历史,她最爱的就是她写的文字了.
在教学楼有三十个人被枪击致死,其中,有新泽西州的学生,亨利.李,20岁,在维基尼亚长大,上学,瑞莎,18岁,大一新生,她和枪击者曾就读于同一所高中,但是显然她们都不认识彼此,米奈是她的老友了,看着她长大的,说,"我知道她很喜欢舞蹈和表演.我知道她在学法语,并且她法语很好.她想跳舞,她很有能力,嗓音甜美,舞蹈也很好"米奈说她比她父母,姐姐和哥哥都更优秀.
凯特,19岁,是唯一幸存的小孩,她在纽约西镇长大. 凯特上中学时,玛丽在是本地一所学校的高级服务员.玛丽和她朋友凯说,"她很有音乐天赋,她会演奏小提琴,唱歌,而且是混合课程的会长,接着她又成为了一个歌唱组合的成员.她真的很有音乐天赋"
在昨天的枪杀案中,又至少4个教授和导师死亡,其中有城市和环境工程学的教授,工程学和数学的教授,凯文,在维基尼亚研究整形外科,他和他的学生观察研究肌肉,反射性反应及机器人技术.詹米,教德语,几年前,他离开大学来到Karlano北部,混得不好,于是又和他妻子一同回到BLACKBURG.他妻子是维基尼亚技术大学外语系的教师.